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Abstracts - An analytical study is performed to examine the heat- and mass-transfer characteristics of natural 
convection flow along a vertical cylinder under the combined buoyancy force effects of thermal and species 
diffusion. The analysis is restricted to processes in which the diffusion-therm0 and thermo-diffusion effects as 
well as the interracial velocities arising from species diffusion are negligible. The surface of the cylinder is 
either maintained at a uniform temperature/concentration or subjected to a uniform heat/mass flux. Among 
the major parameters of the problem are curvature of cylinder, Prandtl and Schmidt numbers, thermal and 
concentration Grashof numbers, and the relative buoyancy force effect between species and thermal 
diffusion. Numerical results are obtained and presented for species diffusion ofinterest in air and water. For 
both heating/diffusing conditions, the local wall shear stress, the local Nusselt number, and the local 
Sherwood number increase with increasing curvature of the cylinder. In addition, the first two quantities’ are 
found to increase and decrease as the buoyancy force from species diffusion assists and opposes, respectively, 
the thermal buoyancy force. The mass-transfer parameter or the local Sherwood number is enhanced as the 
thermal buoyancy force increases. Finally, the combined buoyancy force from thermal and species diffusion 
provides larger Nusselt and Sherwood numbers for uniform surface heat/mass flux than for uniform wall 

temperature/concentration. 

NOMENCLATURE y,, modified dimensionless boundary-layer 

species mass fraction or concentration; 
thickness. 

binary diffusion coefficient; Greek symbols 
reduced stream functions; 
gravitational acceleration; 
thermal Grashof number 

MT, - T,)x31vz; 
modified thermal Grashof number, 

gBqwx4/kv2 ; 
Grashof number for mass diffusion, 

sV(C, - Cco)x3/~2 ; 
modified Grashof number for mass 
diffusion, g/?*i,x4/pDv2 ; 
thermal conductivity of the fluid ; 
mass flux of the diffusing species; 
ratio of Grashof numbers, GrX,C/GrX,t; 

ratio of modified Grashof numbers, 

WLlGrZ,, ; 

a, 
A 

local Nusselt number, 

q,xlW, - TmPl ; 
Prandtl number, v/u; 
local surface heat-transfer rate per unit 
area ; 
radius of cylinder ; 
Schmidt number, v/D; 

local Sherwood number, 

%~/CPW, - CA1 ; 
fluid temperature ; 

. 

thermal diffusivity of the fluid; 
volumetric coefficient of thermal expan- 

sion, I- k3d~T),,& ; 
volumetric coefficient of expansion with 
mass fraction, [ - (a~/X),,~]/p ; 
pseudo-similarity variable; 
dimensionless boundary-layer thickness ; 
dimensionless temperature; 
dimensionless mass fraction ; 
dynamic viscosity of the fluid ; 
kinematic viscosity of the fluid ; 
dimensionless axial coordinate; 
density of the fluid ; 
shear stress; 
modified dimensionless temperature; 
modified dimensionless axial coordinate ; 
stream function ; 
modified dimensionless mass fraction. 

Subscripts 

W, 
a, 

condition at the wall; 
condition at the free stream. 

INTRODUCTION 

velocity components in x and r MANY transport processes exist in nature and in 
directions ; industrial applications in which the transfer of heat 
axial and radial coordinates; 
modified pseudo-similarity variable; 

and mass occurs simultaneously as a result of com- 
bined buoyancy effects of thermal diffusion and 
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diffusion of chemical species. The effects of mass 
diffusion on natural thermal convection flow have 

been widely investigated for vertical and horizontal 
flat plates. A summary of the past studies can be found, 

for example, in [l]. More studies have been reported 
for vertical and horizontal plates [l, 21 and very 

recently for inclined plates [3]. These latter analyses 
were based on species diffusion processes with very low 
concentration level such that the diffusion-therm0 

effect and the thermo-diffusion effect, as well as the 
interfacial velocity at the wall due to species diffusion. 
were neglected. Solutions were obtained in a similarity 

form and numerical results were presented for a range 
of Schmidt numbers of common interest in air and 
water. 

In contrast to vertical, inclined, and horizontal 

plates, the analysis of natural convection on a vertical 
cylinder has been confined to flow induced solely by 

the temperature variations (see, for instance, [4] and 
the studies cited therein). No analytical work on 

natural convection along a vertical cylinder under the 
combined effects of thermal and mass diffusion seems 
to have been reported. The main reason for a lack of 

analytical study on this problem can be attributed to 
the rather difficult mathematical and numerical pro- 
cedures involved in dealing with the nonsimilar boun- 

dary layers. In view of the importance of simultaneous 

transfer of heat and mass in engineering applications, 
such a study for vertical cylinders is warranted. This 
has motivated the present investigation. In the ana- 
lysis, consideration is given to situations in which the 
surface of the cylinder is either maintained at a uniform 

temperature and concentration or subjected to a 
uniform heat and mass flux. The conservation equa- 
tions of the laminar boundary layer are first transfor- 
med into a nondimensional form and their solutions 
are then obtained by an efficient finite-difference 

method. Numerical results are presented for air (Pr = 

0.7) over a Schmidt number range of Sc = 0.2 1.0 and 

for water (Pr = 7) over SC = 77500. They cover a 
range of diffusion species in air and water. 

ArVALYSIS 

Consider a vertical cylinder of radius r,, which is 
situated in an otherwise quiescent environment having 
temperature T, and concentration C I. The surface of 

the cylinder is maintained at a uniform temperature T, 

and uniform concentration C, or is subjected to a 
uniform heat flux 4, and uniform mass flux rig,,.. The 
axial and radial coordinates are taken to be n and r, 
with x measuring the distance along the centerline of 
the cylinder from its bottom end and r measuring 
normal to the axis of the cylinder. The gravitational 
force then acts in the opposite direction of X. The 
buoyancy force resulting from the concentration 
differences may assist or oppose the buoyancy force 
induced by the temperature variations in the fluid. 

The analysis will be confined to species diffusion 
processes in which the diffusion-therm0 and thermo- 
diffusion effects can be neglected. By employing the 

Boussinesq approximation, along with the conven- 

tional boundary-layer assumptions, the conservation 
equations of the laminar boundary layer can be written 
as 

(7 (: 
(ru) + 1 (17-l = 0 

ax c r 

au du i c: u-- f I’- = VP _ 
ax Br r ar 

+ g[j(7‘ - T,) + yp*(c‘ - (‘, i 12) 

(3) 

dC ac I a ’ c:c 
u-_ + (‘-- = & 

aX dr i i 
r 

r ?r ?r , 
(4) 

where the conventional notations are defined in the 

Nomenclature. Equations (l)-(4) are subject to the 

following boundary conditions 

u = 0, r = L’, at r = r. 

T = T, and C = C, or q, = _ lia’T’J&- 

and tri,. = - pD?C’c?r at r = r. (5) 

LI --t 0, T+T,, C’ +(‘, xr-+ I 

u=O, T=T,, c’ = C‘ , at .t -= 0: r 2 t’,. 

The interfacial velocity U, at the surface of the cylinder 

as a result of mass diffusion process will be neglected in 
the analysis. This is because consideration will be given 
to situations in which the concentration level is low. 
The validity and the condition for the neglect of c’, will 
be further discussed later. 

Equations (l)-(5) do not admit a similarity solution. 
The nonsimilarity arises from the surface curvature of 
the cylinder. As the first step in the analysis, these 
equations are transformed into a dimensionless form. 

This will be done separately for the uniform wall 
temperature/concentration case and the uniform sur- 
face heat/mass flux case. 

Uniform Wall Temperature/Concentration ( U WT; 

UWC) case 

For this case, one introduces the dimensionless axial 

coordinate t(x) and the pseudosimilarity variable n 

< = 2 rt (Gr,,,/4)-’ 4. 

along with the dimensionless stream function f (<, q), 

the dimensionless temperature 0(<, n), and the dimen- 
sionless concentration I({, q) defined, respectively, by 

.f(L V) = $6, r)l[4vr0(Gr,.,i4)’ “1 (7) 

0(5> rl) = (T - ‘L )/(T, - T 7 !> 

A(& a) = (C C‘ , )/((‘, -- c‘, ) (to 
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where the stream function $(x,r) satisfies the con- 
tinuity equation (1) with 

ru = a$far, rv = - a$fax. (9) 

By introducing equations (6)-(9) into equations (2)- 
(5) one can arrive at the following system of equations : 

(1 + <s)f” + (5 + 3f)f” - 2f” + 0 + NI 

= 5(f'afm -fvaflao (10) 

(11) 

(12) 

(13) 

$1+59)8”+ &+ 3f e 
( > 

= t(f'aefay - e'af/ar) 

$1+ee,z+ ;+ 3f 
i > 

1’ 

= t(f'anjag - nfaf/ag) 

fw) = 0, 3fw) + cafwvat = 0, 
e(t,o) = q&o) = 1, 

f'(5,m) = @&CO) = 4&m) = 0. 
In the foregoing equations, the primes stand for 

partial derivatives with respect to 9, Pr is the Prandtl 
number, SC is the Schmidt number, and the quantity N 
has the expression 

N = B*(G - Cm) _ Gr,,, 
BP, - T,) Gr,,, 

(14) 

where the local thermal Grashof number Gr,,t and the Uniform Surface HeatfMass Flux (UHFIUMF) case 
local Grashof number for mass diffusion Gr,,, are The dimensionless coordinates for this case are 
given by given by 

Gr,,t = g/VT, - T,)x3/v2, 

Gr,,, = g/l*(C, - C&x3/v’. (15) 

Thus, N represents the relative effect of chemical 
species diffusion on thermal diffusion. When N = 0, 
there is no mass diffusion and the buoyancy force 
arises solely from the temperature differences. The 
buoyancy forces from mass and thermal diffusion are 
combined to assist the flow when N > 0, whereas they 
oppose each other when N < 0. 

In writing the boundary condition 3f (&O) + 5 af 
(r,O)/ac = 0 in equation (13), the interfacial velocity at 
the surface, u,,,, associated with the species diffusion has 
been neglected. This approximation can be justified if 
the condition 

7 << (GrX,,/4)‘i4 (16) 

or, with the use of Fick’s law, 

x = 2t(Gr$/5)m1/5, 

Y= s (Gr,*,,/5)‘i5 
0 

and the dimensionless stream function F(x, Y), 
perature C#J(X, Y), and concentration w(x, Y) by 

F(x, Y) = IL(x, r)l[5vro(Gr:,d5)“5] 

(22) 

tem- 

(23) 

4(X? Y) = (T - ~,)(Gr~,J5)“5/(qwxlk) (24) 

W(X, Y) = (C - C,)(Gr:,,/5)“5/(~,x/pD). 

(25) 

Introduction of equations (22)-(25) and (9) into 
equations (l)-(5) leads to the system of equations 

(1 + ,Y)F”’ + (x f 4F)F” - 3F’2 + 4 + N*w 

= X(~ aFlaX - ~na~/a~) (26) 

$1 + xY)#’ + ; + 4F 4’ - F’4 
( ! 

&w - CA-W,O)l << 1 

is fulfilled. 
It must be pointed out that the t(x) parameter 

appearing in equation (6) can be written as < = (r2 - 
ri)/& which is seen as a measure of the ratio of the 
boundary-layer thickness to the cylinder radius r,,. As 

a result, small values of 5 correspond to relatively thin 
boundary layers (compared to ro) and hence to small 
deviations from a flat plate. On the other hand, large 
values of 5 correspond to relatively thick boundary 
layers and to large deviations from a flat plate. When < 
= 0, the problem reduces to a vertical flat plate. In 
addition, for very thin boundary layers, r does not 
differ appreciably from r0 so that (r2 - ri)/2r, reduces 
to r - r,, = y and, as a consequence, the r) variable 
reduces to the similarity variable for a flat plate. 

The major physical quantities of interest are the 
local wall shear stress T,,,, the local Nusselt number 
x. 1, uxr and the local Sherwood number Sh,. They are 

defined, respectively, by 

,_' 
Nu,=~?, 

T,-T, k 

Sh, = k 
(Cm’ - c-1 

5. (18) 
PD 

By employing Fourier’s law q, = - k(aT/ar),=,, and 
Fick’s law ni, = - pD(X/dr),=,,, along with the 
expression for (at@),,,,, one can show that 

r w = 4pvx-2(Gr XJ /4)3’4f”(&O) (19) 

Nu,(Gr,,,/4)- 1’4 = - W({, 0) (20) 

Sh,(Gr,,,/4)- ‘I4 = Sh,( 1 Gr,,,/N l/4)- ‘I4 

= - Z&O). (21) 

w‘ - F’w 

= X(~awja~ - da~ia~) 

(27) 

(28) 
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F’(X,O) = 0, 4F(,y,O) + xdF(X,O)/r?X = 0 

@(x,0) = O’(X,O) = - 1, (29) 

F’(& x) = $(I, / ) = ‘O(X, % ) = 0. 

The quantity N* in equation (26) measures the relative 
effect of mass and thermal diffusion and is given by 

N* = (B*~i,lp~)l(B~Jk) = GrQGrZ., (30) 

where 

Gr& = gfi*ti~,,x4/pDv2, Gr,*,, = gbqU,x41kv2 (31) 

are, respectively, the modified Grashof numbers for 

mass and thermal diffusion. The buoyancy effects of 
mass and thermal diffusion are combined to assist the 
flow when N* > 0 and to oppose the flow when N* < 

0. There is no buoyancy force from mass diffusion 
when N* = 0. 

The boundary condition 4F(x, 0) + 1 dF(x, 0)/8x = 
0 in equation (18) which is obtained by neglecting the 
interfacial velocity r, at the surface due to the mass 
diffusion, is valid when the condition 

1.,.X 
~~ << (G&/5)’ ‘5 
v 

(32) 

or equivalently the condition 

(33) 

is fulfilled. 

The wall shear stress, the local Nusselt number, and 
the local Sherwood number as defined by equation 
(18) now lead, respectively, to the expressions 

r, = ~~~x-~(G~~,,/~)~~~F”(x,O) (34) 

NuX(Gr:,,/5)-1’5 = 1/4(x, 0) (35) 

Sh,(GrZ,,/5)- 1’5 = Sh,(lGr&/5N*/)-1’5 

= l/w(x,O). (36) 

Comparisons between U WTJU WC and UHFJUMF 
cases 

It is interesting to compare the results between the 
uniform wall temperature/concentration (UWT/ 

UWC) case and the uniform surface heat/mass flux 
(UHF/UMF) case. This comparison will be done for 
the local Nusselt numbers and the local Sherwood 
numbers. To facilitate such a comparison, it is nec- 
essary to define an equivalent axial coordinate for 
thermal diffusion 5, for the UHF case in terms of the 

local wall temperature T,(x) and an equivalent axial 
coordinate for mass diffusion [,,, for the UMF case in 
terms of the local wall concentration C,(x). Let 

5, = 2.x -[~(Gr,.,),/!41-“4 
r0 

4,., = $ [I (Gr,,,), /PI _ ’ 4 

(37) 

(38) 

where 

(Gr 
(39) 

and 

T,(x) - ‘I’, = (q,.x/k)(G&.!5)’ ‘&r,(l) (40) 

C,(x) - C 1 = (ti,.x/pD)(Gr:,,jS)’ “m(~,O) (41 J 

from equations (24) and (25), respectively. 

Substituting equation (40) into equation (37) one 
obtains, with the aid of x definition in equation (22), 
that 

5, = x[(5/4)~(x.O)] -I 4. (42) 

Similarly, by substituting equation (41) into equation 

(38). one arrives at 

<,,, = ~[(5/4)N*c11(~,0)]-““. i43) 

Thus, for 5 = <, as given by equation (42), one finds 

from equations (20) and (35) that 

Similarly, for c, = <,.,, one can find the Sherwood 
number ratio as 

(NJu,, _ (415)’ 4 

(S&J,,, [-~.‘(5,0)][~(x,o)]1’4[~u(x,o)]’ (45) 

To determine the local Nusselt number and the local 

Sherwood number ratios, the relationship between N* 
and N needs to be known. From the definition of N 
and N* it can be shown that 

N*/N = @(~,O)~tu(~,0) (46 J 

when 5 = 5,. With this, a comparison between 

equation (42) and equation (43) yields the relationship 

t,,, = <,l’N’ 4. (47) 

In the situation in which SC = Pr, the @I and RJ 
functions, equations (27) and (28), become identical 
and $(x,0) = w(x,O). This leads to N* = N from 
equation (46) when < = <,. In addition, equations (11) 
and (12) give @(<, 0) = A’([, 0) when SC = Pr. This then 
leads to N* = N when < = ,‘,. Thus, under the 
conditions SC = Pr, 5 = t,, and N* = N, the local 
Sherwood number ratio and the local Nusselt number 
ratio as given, respectively, by equations (45) and (44) 
become exactly identical. The numerical results for 
these ratios will be presented later. 

NLJMERICAL SOLIITIONS 

The two systems of partial differential equations, 
equations (10))(13) and (26)) (29) are coupled, re- 
spectively, through the functions.f, 6, i and F, $, o for 
parametric values of N, Pr, SC for the former and N*, 
Pr, SC for the latter. In the present study, these 
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2.0 1 , , 1 1 I 1 I 
N UWT/UWC 
I 

---- 0 

-__ -0.5 

I .6 

equations were solved by an accurate finite-difference 
method. This method is a modified version of the 
method described in [S] for solutions of uncoupled 
equations. To begin with, the partial differential 
equations (lo)-(12) or (26)-(28) are first converted 
into a system of first order equations which are then 
expressed in finite-difference form by approximating 
the functions and their first derivatives in terms of 
centered difference and averages at midpoints of the 
net segments in the (5,~) or (1, Y) coordinates or the 
net rectangles in the (5,~) or (x, Y) domains. The 
resulting nonlinear finite difference equations are then 
solved by Newton’s iterative method. 

In the computations for the uniform wall tempera- 
ture/concentration (UWT/UWC) case, the { values 
were varied from 0 to about 10 and the values of the 
parameter N from -0.5 to 1.0, with Schmidt numbers 
ranging from 0.2 to 1.0 for Pr = 0.7 and from 7 to 500 
for Pr = 7. For the case of uniform surface heat/mass 
flux, the 1 values were varied from 0 to 5 and the N* 
values from -0.5 to 1.0, with Schmidt numbers of 0.6 
to 1.0 for Pr = 0.7 and 7 to 500 for Pr = 7. While a step 
size of At or Ax of0.25 was found to be sufficient for the 
entire 5 or x range investigated, the step sizes for A11 or 
AY were varied from the standpoints of accuracy and 
economy. For the UWT/UWC case with Pr = 0.7, Aq 
was increased step by step from 0.02 for 0 I q I 6,0.04 
for6 I 9 I 15,0.08for15 I q 2 30,0.25for30 I q I 
80, 2.0 for 80 I 9 I 350, to 5.0 for r] > 350. The qa 
values were varied from 10 to about 500 as c increased 
from 0 to about 10. Similar increases in step sizes were 
employed for the UHF/UMF case over the Y, range of 
10 to 200 as ): varied from 0. to 5. However, for very 
high Schmidt numbers, such as SC = 100 and 500, that 
are associated with Pr = 7, the mass fraction boun- 
dary layer becomes very thin (q < 1) as compared to 
the flow and thermal boundary layers, and smaller step 
sizes of A? = 0.005 for 0 < q I 1 and AY = 0.002 for 0 
< Y _< 1 were additionally used, respectively, for the 
UWT/UWC and UHF/UMF cases to provide ac- 
curate results. The Schmidt number range for Pr = 0.7 

covers diffusion into air of hydrogen (SC = 0.22), water 
vapor (0.6), carbon dioxide (0.94) and methanol (0.97). 
For Pr = 7, a Schmidt number of 500 covers closely 
the diffusion into water of ammonia (SC = 445), 
carbon dioxide (453), sulfur dioxide (523), methanol 
(556), sodium chloride (580), and chlorine (617). 

00 
0 2 4 6 8 IO 12 

e 

FIG. 1. Local wall shear results for uniform wall tempera- 
ture/concentration, Pr = 0.7 and 7. 

01 , I , 1 , 1 , , , , j 

0 2 4 6 8 IO 12 
E 

RESULTS AND DISCUSSION 

Figures l-3 illustrate, respectively, the local wall 
shear stress, the local Nusselt number, and the local 
Sherwood number as a function of < for the UWT/ 
UWC case, covering various parametric values of N 
and SC for Pr = 0.7 and 7. Similar plots for the 
UHF/UMF case are shown, respectively, in Figs. 4-6 
as a function of x. It is noted that both < and x are not 
only a measure of the curvature of the cylinder, but 
also a measure of the ratio of the boundary-layer 
thickness to the cylinder radius rO, because they can be 
represented, respectively, as 5 = (r2 - ri)/r& and r = 

FIG. 2. Local Nusselt number results for uniform wall 
temperature/concentration, Pr = 0.7 and 7. 

(r’ - r,$/riY. Thus, small values of < or x represent 
thin boundary layers compared to r. and hence small 
deviations from a flat plate, with < = 0 or x = 0 
corresponding exactly to a vertical flat plate. On the 
other hand, large values of 5 or x correspond to 
relatively thick boundary layers and hence to large 
departures from a flat plate. It should be noted, 

- -. . . however, that 5 = 0 or x = 0 implies that r0 -+ a. 
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olp...i_i 
0 2 4 8 10 12 

FK. 3. Local Sherwood number results for uniform wall 
temperature/concentration, Pr = 0.7 and 7. 

The wall shear stress 7,(~‘/4~v)i(Gr,,,/4)~,~ for the 
UWT/UWC case (Fig 1) is seen to increase with 
increasing value of 5, i.e. with increasing curvature of 
the cylinder. On the other hand, for the UHF/UMF 
case (Fig. 4), the quantity s,(~~:‘S~v)/(Gr’,,/5)~‘~ de- 
creases with an increase in x. However, the decrease of 
this quantity does not mean that the wall shear stress 
75, decreases with increasing value of x. Indeed, it 

0 I 2 3 4 5 6 
X 

Fro. 4. Locat wall shear results for uniform surface heat/mass 
flux, Pr = 0.7 and 7. 

x 

FIG. 5. Local Nusselt number results for uniform surface 
heat/mass flux, Pr = 0.7 and 7. 

actually increases, as will now be demonstrated. From 
equation (34) the wall shear stress r, for the UHF. 
UMF case is seen to be proportional to x~‘~F”(~,O}. 
In addition, from the x expression in equation (22), one 
sees that x _ x iI5 or x N x5. Thus. in terms of x, one 
obtains TV _ x’F”(x,O), and the wall shear stress ratio 
at two different x values for the UHF/UMF case can 
be expressed as 

(%ZkVl)“HF = ~xz/x~~2~F”ixz~~~:F”(xI~~~1. 
(4%) 

OL---LT._ s 

I 

~L.~~~.~~_l 
0 I 2 4 5 6 

X 

FIG. 6. Local Sherwood number results for uniform surface 
heat/mass flux, Pr = 07 and 7. 
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As an example, for Pr = 0.7, SC = 0.6, and N* = 1, the 
numerical results provide F”(xl,O) = 1.1829for xi = 1 
and F”(xr,O) = 1.1211 for xz = 2. This gives 

(rw*/rwl)uHf = 3.791. Thus, the actual wall shear stress 
increases with an increase in the x value. From the 
analogy between heat and momentum transfer, an 
increase in the Nusselt number is a consequence of an 
increase in the wall shear stress, and vice versa. Figure 
5 indicates that the local Nusselt number Nu, increases 
with an increase in x. Thus, 7,,, should also increase 
with x, as has just been demonstrated. Similarly, from 
the definition of < in equation (6) and 7, in equation 
(19) one can derive for the UWT/UWC case 

(rw2/rwl)UWT = (~z/r1)Cfn(52,0)lf”(1;1,0rl. 
(49) 

For Pr = 0.7, SC = 0.6, and N = 1, for example, one 
has~(~~,O) = 1.225 when (I = 0.931 (corres~nding 
to x1 = 1) andf"(&,O) = 1.296 when tr = 1.932 
(corresponding to x2 = 2). This gives (7w2/~wi)UWT = 

2.195. Again, the actual wall shear stress for the 
UWT/CJWC case is seen to increase with increasing 5. 
A comparison between these two wall shear stress 
ratios suggests that, contrary to the conclusions one 
might have drawn from examining Figs. 1 and 4, the 
combined buoyancy force has a larger effect on the 
wall shear stress for the UHF/UMF case than for the 
UWT/UWC case. This agrees with the trend ofNusselt 
number ratio between the UHF and UWT cases, as 
will be explained Iater when Fig. 10 is presented. 

An inspection of Figs. 1 and 4 also reveals that the 
values of the wah shear stress are larger for fluids with 
Pr = 0.7 (such as air) than for fluids with Pr = 7 (such 
as water). This is because of the lower Prandtl number 
of air which exhibits a greater velocity gradient 
and hence the shear stress at the wall. In contrast to the 
wall shear stress plots, the local Nusselt numbers for 
both UWT/UWC and UHF,&.JMF cases (Figs. 2 and 
5) are seen to increase with increasing curvature of the 
cylinder. Furthermore, the local Nusselt numbers for 
Pr = 7 are larger than those for Pr = 0.7. This is to be 
expected, because a larger Prandtl number results in a 

thinner thermal boundary layer, with a corresponding 
larger temperature gradient at the wall and hence a 
larger surface heat transfer rate. 

It is seen from Figs. 1,2,4, and 5 that as compared to 
the case of N = 0 or N* = 0 (i.e. the case in which there 
is no mass diffusion and the buoyancy force arises 
solely from the temperature difference), both the wall 
shear stress and the local Nusselt number increase 
when the buoyancy force from mass diffusion acts in 
the same direction as the thermal buoyancy force to 
assist the flow (i.e. when N z= 0 or N* > 0) and 
decrease when the buoyancy force from mass diffusion 
acts in the opposite direction of the thermal buoyancy 
force to oppose the flow (i.e. when N < 0 or N* < 0). 
Indeed, the combined buoyancy effects of thermal and 
mass diffusion are represented by the terms 8 + NJ. in 
equation (10) and # + N*o in equation (26) re- 
spectively, for the UWT~WC and UHF/UMF cases. 
When the combinations of Pr, SC, and N or N* are 
such that t9 + NL > 9 or # + N*w > 4, the net 
buoyancy force contributes to an increase in both the 
wall shear stress and the local Nusselt number beyond 
their respective values for N = 0 or N* = 0. On 
the other hand, if 8 + NA < 6 or I$ + N*w < 4, 
the net buoyancy force will contribute to a decrease in 
these two quantities below those for N = 0 or N* = 0. 

Inspection of Figs. 1,2,4, and 5 further indicates that 
a common trend exists among the wall shear and 
Nusselt number results. That is, larger departures of 
these quantities from N = 0 (or N* = 0) are seen to be 
associated with smaller values of Schmidt numbers for 
both N > 0 (or N* > 0) and N < 0 (or N* < 0). This 
trend agrees with the physical reasoning in that a 
diffusing species with a smaller Schmidt number 
possesses a larger binary diffusion coefficient which 
wili in return exert a larger effect on the flow and 
thermal fields. 

The Sherwood number results (Figs. 3 and 6) show, 
as in the local Nusselt number plots, that the local 
Sherwood number increases with an increase in the 
curvature parameter 5 or 1. However, in contrast to 
the trend in the local Nusselt number results, larger 

I(r2-r~)/2rOx] (Gr, + /4)“4 I 

FIG. 7. Representative velocity profiles for uniform wall temperature/concentration, Pr = 0.7. 
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values of Schmidt number are seen to provide larger 
Sherwood numbers. This can be explained from the 
fact that a larger Schmidt number corresponds to a 

smaller binary diffusion coefficient for a given fluid and 
to a thinner concentration boundary layer relative to 

the flow boundary layer. This results in a larger 

concentration gradient at the wall (see Fig. 9) and 
hence a larger mass transfer rate or a larger Sherwood 

number. When N or N* is very small (i.e. when the 

species diffusion is very small), heat transfer is not 
strongly affected by species diffusion (see Figs. 2 and 5), 

but the mass-transfer parameter or the Sherwood 

number becomes very large and exceeds that for a 

larger N or N* value (see Fig. 3 and 6). This is because 
under this condition the flow is induced almost entirely 

by the thermal buoyancy force and the species 
diffusion mechanism becomes very effective at very 
low concentration levels. This accounts for the fact 
that for a given concentration Grashof number Gr,,, or 

(XL the Sherwood number curves for smaller N or 
N* values lie above those for larger N or N* values. 
Since for a fixed concentration Grashof number Gr,,,, 

a small N value implies a large thermal Grashof 

number Gr,~t, it can be said that large Sherwood 
numbers occur when the thermal Grashofnumbers are 

large compared to the concentration Grashof 

numbers. 
It is to be noted here that there are no curves for N 

= 0 or N* = 0 in Figs. 3 and 6. This is because the 

Sherwood number is undefined when N = 0 or N* = 
0, as this condition implies that there exists no 

concentration difference in the fluid or that the 
concentration level is negligibly small compared to the 
temperature difference in the fluid. In addition, the 

absolute quantities 1 Gr,,,/N 1 and 1 Gr&/N* 1 are needed 
to ensure that the Sherwood numbers will be positive, 

for Gr,,,, N, Gr:,,, and N* assume positive as well as 

negative values. 
It is of practical interest to compare the present 

analytical results with experimental results. To the best 

knowledge of the authors, the only available experi- 

mental data for vertical cylinders are those of Bot- 
temanne [6] for simultaneous heat transfer and evap- 
oration ofwater vapor into still air (with Pr = 0.71 and 
SC = 0.63) under the UWTKJWC condition. 

Bottemanne’s experiments were conducted using a 
cylinder of “large diameter”. Unfortunately, he did not 
mention the diameter of the cylinder. His experimental 
results are, in the notation of the present paper. 

P(<,O) = - 0.52(1 + N)1’4, 

i’(s’ 0) = - 049’1 + . 3 .I ‘ Y)l 1. 1501 

This gives, for example, 0’(<, 0) = - 0.6184 and ;.‘(;. 0) 
= - 0.5827 for N = 1, and Cr’(<.O) = - 0.4669 and i 
(<,O) = -0.44OOfor N = -0.35 The present analysis 
for Pr = 0.7 and SC = 0.6 under UWT.‘UWC 

condition provides (I) O’(O,O) = ~- 0.6007, /.‘(O,O) = 
- 0.5533 for N = 1 and 0’(0,0) = .-- 0.4426, i’(O,O) = 
- 0.4085 for N = - 0.35 when < = 0 (i.e. for a vertical 

plate) and (2) 0’(0.5,0) = - 0.7267. L’(0.5,0\ :- 
0.6799for N = 1 and 0’(0.5,0) := -- 0.5368, i.‘(O.5.0) = 
- 0.5013 for N = - 0.35 when < = 0.5 (i.e. for a 

cylinder of relatively large diameter). From these 
comparisons, it is evident that the experimental data of 
Bottemanne for a large-diameter cylinder lie between 
the analytical results for 5 = 0 and 5 = 0.5 for both N 

= 1 and N = - 0.35. Thus, it may be concluded that 

the agreement between the analysis and the experi- 

ment is fairly good. 

Representative velocity, temperature, and mass frac- 
tion or concentration profiles for the UWTilJWC’ case 
with Pr = 0.7 are illustrated, respectively. in Figs. 7 9 
for certain values of 5, N, and SC. The curves for N = 0 
in Figs. 7 and 8 correspond to the situation in which 
there is no buoyancy force effect from mass diffusion. 
There are significant increases in the flow, thermal, and 

concentration boundary layer thicknesses as the value 
of 5 increases. However, a larger qh value associated 
with a larger l value does not accurately represent a 
larger boundary-layer thickness, as will now be ex- 
plained. If 4‘ = r - r. is designated as the radial 

distance measured outward from the surface of :he 

[(r’-rt )/2r,,x](Gr,,+ /4)“4 

FIG. 8. Representative temperature profiles for uniform wall temperature/concentration, Pr = 0.7 
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FIG. 9. Representative concentration profiles for uniform wall temperature/concentration, Pr = 0.7. 

cylinder, the rl coordinate in equation (6) can be 
written as 

rl = (~/x)(Gr,,d4)“~[(1 + rlrJ21. (51) 

In addition, from the 5 and rl definitions, one has 

r/r0 = (1 + &)l” (52) 

Thus, for large values of <, r/r0 may be substantially 
larger than one and the factor (1 + r/r,,)/2 that appears 
in equation (51) acts to increase the range of rl for 5 > 
0. However, this increased range of q does not mean 
that the range of (y/x) (Gr,,,/4)1i2, which is a more 
accurate measure of the boundary-layer thickness, has 
increased. Indeed, the range of this quantity could even 
decrease with increasing 5, but the rl value still 
increases because of the large increase in the factor (1 

+ rlr0)/2. 
For the velocity profiles (Fig. 7) the velocity gradient 

at the wall shows an increase with increasing values of 
N and 6, but with decreasing value of SC. This trend 
agrees with the friction factor results shown in Fig. 1. 
Indeed, if the combined buoyancy force effect is larger 
than the effect due to thermal buoyancy force alone, 
that is, if 0 + N1 > 0, the velocity gradient at the wall 
will increase. On the other hand, it will decrease when 
the combined effect is less than the effect from thermal 
buoyancy force, i.e. when 0 + N1 < 0. The tempera- 
ture profiles (Fig. 8) show also that the wall tempera- 
ture gradient increases as the values of 5 and N 
increase and the value of SC decreases. This behavior is 
consistent with the Nusselt number results shown in 
Fig. 2. As with the velocity gradient, the temperature 
gradient at the wall increases above that for N = 0 
when 0 + NI > 0 and decreases below it when 0 + N1 
< 8. 

The concentration or mass fraction profiles (Fig. 9) 
exhibit trends that are somewhat different from those 
of the velocity and temperature profiles. While the 
concentration gradient at the wall increases as c 
increases, a larger increase is associated with a larger 
Schmidt number. The effect caused by the Schmidt 

number on the concentration field is similar to the 
Prandtl number effect on the thermal field that was 
explained when the Nusselt number results were 
presented. 

Finally, the Nusselt number ratios (NuJuar/ 

(Nt&wr between the UHF and UWT cases are 
plotted against the equivalent curvature parameter 5, 
in Fig. 10. Curves are shown only for the cases of Sc = 
Pr and N* = N. It can be seen from the figure that the 
Nusselt numbers for the UHF case are higher than 
those for the UWT case. As 5, increases, the Nusselt 
number ratio decreases and becomes a constant at 
large values of 5,. For Pr = 0.7, the Nusselt number 
ratio starts with a value larger than that for Pr = 7 at 
r, = 0, but it becomes smaller at larger 5, values. In 
addition, it is seen that the Nusselt Number ratio 
decreases as the value of N* = N decreases. As was 
explained in the Analysis Section, the Sherwood 
number ratio (Shx)uMF/(Shx)uWC is exactly identical to 

FIG. 10. Nusselt number ratio and Sherwood number ratio 
for SC = Pr and N* = N. 
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the (~u,hHFIWuxhwT ratio when SC = Pr and N* = 
N, with 5 = 5,. Thus, the curves in Fig. 10 also apply to 
the Sherwood number ratios. 

The present study on natural convection on a 
vertical cylinder under the combined buoyancy force 

effects of thermal and species diffusion indicates that 
the local Nusselt number and the local Sherwood 

number increase with increasing curvature of the 
cylinder. The local Nusselt number increases and 

decreases as the buoyancy force from species diffusion 
assists and opposes, respectively, the thermal buoy- 
ancy force. The mass transfer is found to become more 

effective as the thermal buoyancy force increases. 

While the local surface heat transfer is enhanced as the 
Schmidt number is decreased, the surface mass transfer 
increases with increasing Schmidt number. In addition, 

both the local Nusselt number and the local Sherwood 
number have larger values for Pr = 7 than for Pr = 

0.7. The combined buoyancy force from thermal and 
mass diffusion has been found to provide larger 

Nusselt and Sherwood numbers under uniform surface 

heat/mass f&IX than under uniform wall 
temperature/concentration. 
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TRANSFERT SIMULTANE DE CHALEUR ET DE MASSE EN 
CONVECTION NATURELLE LE LONG D’UN CYLINDRE VERTICAL 

Risumd -- Dam un etude analytique, on considere le transfert de chaleur et de masse pour un Pcoulement de 
convection naturelle le long dun cyhndre vertical, sous l’effet combine de la diffusion thermique et des 
especes. L’analyse est reduite au cas oti les effets de la thermodiffusion aussi bien que des vitesses interfaciales 
provenant de la diffusion des especes sont negligeables. La surface du cylindre est soit 6 
temperature/concentration uniforme soit a flux de chaleur/masse uniforme. Parmi les parametres 
principaux, on note la courbure du cylindre, les nombres de Prandtl et de Schmidt, les nombres de Grashof 
thermique et massique et l’effet relatif des forces dues a la diffusion de chaleur et de masse. Des resultats 
numeriques sont present& pour la diffusion d’espices dans I’air et dans I’eau. Pour les deux conditions de 
chauffage et de diffusion, la tension pa&ale locale, les nombres de Nusselt et de Sherwood locaux croissent 
avec la courbure du cylindre. De plus, les deux premieres grandeurs augmentent ou diminuent selon que la 
force d’Archimede dtje a la diffusion massique assiste ou s’oppose a celle dtie a la diffusion thermique. Ce 
parametre de transfert massique ou le nombre de Sherwood local est augmente lorsque la force d’origine 
ihermique croit. Enfin, les forces combinees d’origine thermique et massique conduisent i des nombres de 
Nusselt et de Sherwood plus grands pour les conditions surfaciques de flux thermique/massique uniforme 

que pour les conditions de temperature/concentration uniforme. 

GLEICHZEITIGER WARME- UND STOFFUBERGANG BEI FREIER 
KONVEKTION L;INGS EINES VERTIKALEN ZYLINDERS 

Zusammenfassung-Eine analytische Untersuchung wird durchgeftihrt, urn das Warme- und Stoffiiber- 
gangsverhalten bei freier Konvektions-striimung entlang eines vertikalen Zylinders unter den kombinierten 
Einfliissen der Auftriebsdkrafte von Warmeleitung und Diffusion zu analysieren. Die Analyse ist auf 
Vorgange beschrankt, bei denen sowohl die Diffusionsthermo- und Thermodiffusions-Efkte, als such die 
GrenzflLchengeschwindigkeiten infolge der Stoffdiffusion vernachliissigbar sind. Die Oberfl%che des 
Zylinders wird entweder aufgleichmaBiger Temperatur bzw. Konzentration gehalten, oder einer gleichmaBi- 
gen Wlrme- bzw. Massenstromdichte unterworfen. Die Hauptparameter des Problems sind Kriimmung des 
Zylinders, Prandtl- und Schmidt-Zahlen, thermische und konzentrationsbezogene Grashof-Zahl und das 
Verhaltnis zwischen den thermisch und konzentrationsbedingten Auftriebskrafteffekten. ZahlenmlBige 
Ergebnisse werden erhalten und fiir den interessierenden Bereich der Stoffdiffusionen in Wasser und Luft 
angegeben. Sowohl bei Heizungs-wie such bei Diffusionsbedingungen nehmen die Grtliche Wandschubspa- 
nnung, die ortliche Nusselt-Zahl und die Grtliche Sherwood-Zahl mit zunehmender Kriimmung des 
Zylinders zu. AuBerdem wurde gefunden, daI3 die ersten zwei GrGBen zu- oder abnehmen, je nachdem die 
Auftriebskraft infolge der Stoffdiffusion die thermische Auftriebskrafi unterstiitzt oder ihr entgegengerichtet 
ist. Der Stoffiibergangsparameter oder die Grtliche Sherwood-Zahl wird mit zunehmender thermischer 
Auftriebskraft gr6Ber. SchlieBlich liefert die kombinierte Auftriebskraft durch WIrmeleitung und Stoffdiffu- 
sion fiir gleichmiBige Wlrme- bzw. Stoffstromdichten an der OberflLche gr6Bere Nusselt- und Sherwood- 

Zahlen als fur gleichfdrmige Wandtemperaturen bzw. Wandkonzentrationen. 
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COBMECTHbIn TEI-IJIO- ki MACCOIIEPEHOC IlPki ECTECTBEHHOR KOHBEKLWM 
BAOJlb BEPTMKAJlbHOl-0 ~AJIkfHfiPA 

.hHOTaum- ~~OBen~HaHan~3T~~nO-~MaCCOO6MeHHbIXXa~aKT~~~CT~K~CTeCTBeHHO-KOHBeKT~BHO~O 

TV,eHHR BnOnb BepTHKanbHOrO WiJItnwHnpa IIpH COBMeCTHOM LleiiCTBHll tlOnS&MHblX Ctin, 06ycnoBneH- 

HbIX ~&if@y3&ieti TeIIJIa A BeIIWCTBa. hams OrpaHWieH IIpOlleCCaMH, B KOTOpbIX AH@@y3HOHHbIfi 

TepMO3++eKT H TepMOllli@$y3HOHHbI~ 3@eKT, a TaKle BenHWHa CKOpOCTEi Ha IIOBepXHOCTH 

lWin&SII~~, 06yCJIOBneHHaK LXI@f$y3Heii Be"WCTBa, rIpeHe6peXUfMO Manbl. nOBepXHOCTb WUIHHDpa 

WI,, HaXOLWTCII npH WCTORHHOii TeMIIepaTyp‘-KOHUeHrpauRa MnH nOnBepmeHa LteiiCTBHKJ OAHO- 

ponHor0 TennoBoro-MaccoBoro noToKa. OcHoBHbIe napatdeTpbI 3anaw BKnwfam KpueesHy 

uanesnpa, wcna npaHATnr B NMmTa, TennoBoe B 50HUeHTpaL,BOHHOe wcna rpacro+a, a TaKTe 

OTHOlUeHIie nOil%~MHbIX Gin, 06yCnOBneHfibIX llU+$y3kieii BeIQeCTBa A TeIlJIa. nOnyqeHb1 YHCneHHbIe 

pe3ynbTaTbI NISI iUi@4ly3HH B BO3LlyXe II BOLle. KaK ,LWl TennOBbIX, TaK U ilJDl i@+y3~OHHbIX 

rpaHmHbIx ycnoeal, 3HaqeHiia noKanbHor0 HanpmeHm cABma Ha cTeHKe, noKanbHor0 wcna 

HyccenbTa H nOKanbHOr0 'GiCna WepByna yBenHW,BaloTCa C POCTOM Kp,,BHsHbI LWJlkfH~pa. KpoMe 

TOl-0 HaheHO, VT0 nepBbIe LlBe BenBWiHbI BO3paCTaEOT HnH yMeHbI"alOTCR B JaBUCHMOCTIl OT TOrO, 

HanpaBneHa nri nom&Has cma, 06ycnoeneHHaa ge@$y3se8 Beqecma, B CT~~OHY neikrelin TennoBoti 

nontiMHoficrinbIunaBnpoTriBononomioMe~ HanpaBneHaki. llapaMeTpMaccoo6MeHa wni noKanbHoe 

wcno IlIepByaa BospacTaer no Mepe yBenwveHan 3HaqeHm TennoBoii nom&MHoA cmbl. HaKOHeU, 

npH OAHOBpeMeHHOM LtetiCTBHll AHf@y3HH Tenna W BeU,eCTBa 3HaSeHHll qIICen HyccenbTa H WepBym 

mIs OLIHOpOLtHOrO UOTOKZI TeWIa-MaCCbI Ha IIOBepXHOCTB Bblule, YeM L,JI5, nOCTOZJHHOi? TeMlIepaT,‘pbI- 

KOHWHTpEUWi Ha CTeHKe. 
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