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Abstracts — An analytical study is performed to examine the heat- and mass-transfer characteristics of natural
convection flow along a vertical cylinder under the combined buoyancy force effects of thermal and species
diffusion. The analysis is restricted to processes in which the diffusion-thermo and thermo-diffusion effects as
well as the interfacial velocities arising from species diffusion are negligible. The surface of the cylinder is
either maintained at a uniform temperature/concentration or subjected to a uniform heat/mass flux. Among
the major parameters of the problem are curvature of cylinder, Prandt! and Schmidt numbers, thermal and
concentration Grashof numbers, and the relative buoyancy force effect between species and thermal
diffusion. Numerical results are obtained and presented for species diffusion of interest in air and water. For
both heating/diffusing conditions, the local wall shear stress, the local Nusselt number, and the local
Sherwood number increase with increasing curvature of the cylinder. In addition, the first two quantities are
found to increase and decrease as the buoyancy force from species diffusion assists and opposes, respectively,
the thermal buoyancy force. The mass-transfer parameter or the local Sherwood number is enhanced as the
thermal buoyancy force increases. Finally, the combined buoyancy force from thermal and species diffusion
provides larger Nusselt and Sherwood numbers for uniform surface heat/mass flux than for uniform wall
temperature/concentration.

NOMENCLATURE Ys X
thickness.

species mass fraction or concentration;
binary diffusion coefficient; Greek symbols

reduced stream functions; 2, thermal diffusivity of the fluid;
gravitational acceleration; B
thermal Grashof number ’

gB(T,, — To)x3?; sion, [ —(0p/0T),.c]/p;

. *, volumetric coefficient of expansion with
modified thermal Grashof number, b mass fraction, [ - (9p/8C) 5 /p;
4 2. 14 P 4
“g q“’ﬁ / ;‘ v ber f . n, pseudo-similarity variable ;
rfs Co nqu er3 °2r ) mass diffusion, Ns dimensionless boundary-layer thickness;
9% (C,, = Co)x/?; 0, dimensionless temperature;
modified Grashof number for mass 1 dimensionless mass fraction :

1 1 * 4 2.
diffusion, gf*n,x*/pDv*; i dynamic viscosity of the fluid;
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modified dimensionless boundary-layer

volumetric coefficient of thermal expan-

thermal conductivity of the fluid;

ot . v, kinematic viscosity of the fluid;
mass flux of the diffusing species; g, dimensionless axial coordinate;
ratio of Grashof numbers, Gr, /Gr, ,; p density of the fluid;
ratio of modified Grashof numbers, t’ shear stress: ’
Gr¥ /GrY,; . ; - i .
locx;l NG number ®. modfﬁed d'1mens.10nless tel.nperatur.e,

» pa modified dimensionless axial coordinate ;
aX/[(T,, = T )k]; ¥, stream function;
Prandtl number, v/a; ) w, modified dimensionless mass fraction.
local surface heat-transfer rate per unit
area; Subscripts
g?:(lin:)sid(zf:zrl:liir; D. W, condition at the wall;
> v/D; 0, condition at the free stream.

local Sherwood number,
mwx/[pD(Cw - Cco)];
fluid temperature;
velocity components
directions;

axial and radial coordinates;
modified pseudo-similarity variable;

in x and r
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INTRODUCTION

MANY transport processes exist in nature and in
industrial applications in which the transfer of heat
and mass occurs simultaneously as a result of com-
bined buoyancy effects of thermal diffusion and
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diffusion of chemical species. The effects of mass
diffusion on natural thermal convection flow have
been widely investigated for vertical and horizontal
flat plates. A summary of the past studies can be found,
for example, in [1]. More studies have been reported
for vertical and horizontal plates [1,2] and very
recently for inclined plates [3]. These latter analyses
were based on species diffusion processes with very low
concentration level such that the diffusion-thermo
effect and the thermo-diffusion effect, as well as the
interfacial velocity at the wall due to species diffusion,
were neglected. Solutions were obtained in a similarity
form and numerical results were presented for a range
of Schmidt numbers of common interest in air and
water.

In contrast to vertical, inclined, and horizontal
plates, the analysis of natural convection on a vertical
cylinder has been confined to flow induced solely by
the temperature variations (see, for instance, [4] and
the studies cited therein). No analytical work on
natural convection along a vertical cylinder under the
combined effects of thermal and mass diffusion seems
to have been reported. The main reason for a lack of
analytical study on this problem can be attributed to
the rather difficult mathematical and numerical pro-
cedures involved in dealing with the nonsimilar boun-
dary layers. In view of the importance of simultaneous
transfer of heat and mass in engineering applications,
such a study for vertical cylinders is warranted. This
has motivated the present investigation. In the ana-
lysis, consideration is given to situations in which the
surface of the cylinder is either maintained at a uniform
temperature and concentration or subjected to a
uniform heat and mass flux. The conservation equa-
tions of the laminar boundary layer are first transfor-
med into a nondimensional form and their solutions
are then obtained by an efficient finite-difference
method. Numerical results are presented for air (Pr =
0.7) over a Schmidt number range of Sc = 0.2- 1.0 and
for water (Pr = 7) over Sc¢ = 7-500. They cover a
range of diffusion species in air and water.

ANALYSIS

Consider a vertical cylinder of radius ry, which is
situated in an otherwise quiescent environment having
temperature T ,, and concentration C.,. The surface of
the cylinder is maintained at a uniform temperature T,,
and uniform concentration C,, or is subjected to a
uniform heat flux g, and uniform mass flux m,. The
axial and radial coordinates are taken to be x and r,
with x measuring the distance along the centerline of
the cylinder from its bottom end and r measuring
normal to the axis of the cylinder. The gravitational
force then acts in the opposite direction of x. The
buoyancy force resulting from the concentration
differences may assist or oppose the buoyancy force
induced by the temperature variations in the fluid.

The analysis will be confined to species diffusion
processes in which the diffusion-thermo and thermo-
diffusion effects can be neglected. By employing the
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Boussinesq approximation, along with the conven-
tional boundary-layer assumptions, the conservation
equations of the laminar boundary layer can be written
as

e

? o
o ru) + oo (e =0 {13
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Uu—+v—=v— —|r—
O0x or ror\ or,
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where the conventional notations are defined in the
Nomenclature. Equations (1)-(4) are subject to the
following boundary conditions

u=0, r=c,atr=r,
T=T,and C=C,or g, = — kiT/or
and m,, = — pDCC/ératr=r, (5)

u—0, T—-T, C
u=0, T=T,,

B R S e

C=C,atx=0, rzr,
The interfacial velocity v,, at the surface of the cylinder
as a result of mass diffusion process will be neglected in
the analysis. This is because consideration will be given
to situations in which the concentration level is low.
The validity and the condition for the neglect of ¢, will
be further discussed later.

Equations (1)~(5) do not admit a similarity solution.
The nonsimilarity arises from the surface curvature of
the cylinder. As the first step in the analysis, these
equations are transformed into a dimensionless form.
This will be done separately for the uniform wall
temperature/concentration case and the uniform sur-
face heat/mass flux case.

Uniform Wall Temperature/Concentration (UWT/
UWC) case

For this case, one introduces the dimensionless axial
coordinate &(x) and the pseudosimilarity variable 5

E=2 = (Grodh)
Fo

2,2
TGt (6

"= 2r;,x

along with the dimensionless stream function f(&, 1),
the dimensionless temperature 8(Z, n), and the dimen-
sionless concentration A(&,n) defined, respectively, by

FEn) = W(x,r)/[4vro(Gr. /4" *] gl
9(5»’1) = (T - T’X)/(TW - Tr ,'s

Mem) =(C ~ CMNC, —C) (8)
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where the stream function ¥(x,r) satisfies the con-
tinuity equation (1) with

ru=0y/ér, rv= — Oy/ox. 9)

By introducing equations (6)—(9) into equations (2)—
(5) one can arrive at the following system of equations :

(L+&mf" +E+3)f" —2f*+0+Ni
= (f'of"/68 — fafiod)  (10)

1 v é U

‘P;(l-f-é'l)e +<E+ 3f>0
- & a0j0e — 0'37/e8) (1)

l " f !

S (L+imA” + <S_C + 3f)/1

= &(f" 04108 — X of [98)

f€,0)=0, 3(£0)+ {f(£,0)/0 =0,
8(5,0) = A(5,0) = 1,

f(€,0) =0(, )= A, 0)=0.

In the foregoing equations, the primes stand for
partial derivatives with respect to #, Pr is the Prandtl
number, Sc is the Schmidt number, and the quantity N
has the expression

_ ﬁ*(cw - Coo) _ er.c
C BT, -T,) Gr,

where the local thermal Grashof number Gr,, and the
local Grashof number for mass diffusion Gr, . are
given by

er.t = gﬁ(Tw - Tao)xa/vzy
Gree = gB*(C, — C)X* V2 (15)

Thus, N represents the relative effect of chemical
species diffusion on thermal diffusion. When N = 0,
there is no mass diffusion and the buoyancy force
arises solely from the temperature differences. The
buoyancy forces from mass and thermal diffusion are
combined to assist the flow when N > 0, whereas they
oppose each other when N < 0.

In writing the boundary condition 3f(£,0) + £df
(£,0)/0¢ = 0in equation (13), the interfacial velocity at
the surface, v,,, associated with the species diffusion has
been neglected. This approximation can be justified if
the condition

(12)

(13)

(14)

5;5 « (Gry 41 (16)
or, with the use of Fick’s law,
1
EE(Cw — CL)[-4( 0]« 1 17)

is fulfilled.

It must be pointed out that the £(x) parameter
appearing in equation (6) can be written as ¢ = (r? —
ra)/nré which is seen as a measure of the ratio of the
boundary-layer thickness to the cylinder radius r,. As
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a result, small values of & correspond to relatively thin
boundary layers (compared to r,) and hence to small
deviations from a flat plate. On the other hand, large
values of ¢ correspond to relatively thick boundary
layers and to large deviations from a flat plate. When £
= 0, the problem reduces to a vertical flat plate. In
addition, for very thin boundary layers, r does not
differ appreciably from r, so that (r> — r3)/2r, reduces
tor — ro = y and, as a consequence, the n variable
reduces to the similarity variable for a flat plate.

The major physical quantities of interest are the
local wall shear stress t,, the local Nusselt number
~Nu,, and the local Sherwood number Sh,. They are
defined, respectively, by

Ou w x
Tw=.u< ) ’ N“x ‘_—q_~’

or T, T, k
m X
Shy=—"— —. (18
- 1Y
By employing Fourier’slaw ¢q,, = — k(0T/or),-,, and

Fick’s law m, = — pD(éC/dr),-,, along with the
expression for (Ju/0r), -,,, one can show that

T, = 4uvx” (Gr, /4)**f"(£,0) (19)

Nu(Gr, /4)~""* = — 0(,0) (20)
Shy(Gre/4) ™1 = Shy(|Gr,./N|/4)~ 1/

= — (0. (1)

Uniform Surface Heat/Mass Flux (UHF/UMF ) case

The dimensionless coordinates for this case are
given by

=22 (Gre/5)7 1,
To

r? —ri
Y= 3 (Gry. /5 (22)

roX

and the dimensionless stream function F(y, Y), tem-
perature ¢(y, Y), and concentration w(y, Y) by

F(, Yy = (x,r)/[Svro(Gry,/5)' ] (23)
¢ (6, Y) = (T = T,)(Gry./5)" /(qux/k) (24)

ol Y) = (C — C,)(Gr},/5)'*/(rm,x/pD).
(25)

Introduction of equations (22)-(25) and (9) into
equations (1)—(5) leads to the system of equations

1+ xY)F" +(x + 4F)F" = 3F? + ¢ + N*w
= y(F' OF'/dy — F" 0F[dx) (26)
1 " Z ’ 4
E(l +xY)¢" + <Pr + 4F>¢ -~ F¢
= x(F' 0¢/ox — ¢'0F/0y) (27)
1
—1+YV)o" + (1 + 4F)w’ ~Fo
Sc Sc

= g (F' 0w/0y — ' 0F/0y) (28)
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F(1:0)=0. 4F(x,0) + x @F (x,0)/¢y = 0
¢'(0,0) = w'(x,0 = — 1,
F/(Z’ x):q)(ls Z)Z(U(X’X):()

The quantity N* in equation (26) measures the relative
effect of mass and thermal diffusion and is given by

(29)

N* = (B*n,/pD)(Bq../k) = Gr¥ /GrE,  (30)

where

Gr¥. = gp*m, x*/pDv:, Gr¥, = gBq,x*/kv? (31)
are, respectively, the modified Grashof numbers for
mass and thermal diffusion. The buoyancy effects of
mass and thermal diffusion are combined to assist the
flow when N* > 0 and to oppose the flow when N* <
0. There is no buoyancy force from mass diffusion
when N* = 0.

The boundary condition 4F(y,0) + x dF(y,0)/dy =
0 in equation (18), which is obtained by neglecting the
interfacial velocity ¢, at the surface due to the mass
diffusion, is valid when the condition

X (G 5y (32)
vy
or equivalently the condition
1 (C,-C
LG =0 (33)
Se o(x0)

is fulfilled.

The wall shear stress, the local Nusselt number, and
the local Sherwood number as defined by equation
(18) now lead, respectively, to the expressions

T, = 5puvx " H(Gr¥ /5P F(1,0) (34)
NuGr /5™ 1% = 1/$(x.0) (35)

Shy(Gri,/5)™ 1" = Shy(|Gr¥ /SN*|)~ 17
= 1/w(,0). (36)

Comparisons between UWT/UWC and UHF/UMF
cases

It is interesting to compare the results between the
uniform wall temperature/concentration (UWT/
UWC) case and the uniform surface heat/mass flux
(UHF/UMF) case. This comparison will be done for
the local Nusselt numbers and the local Sherwood
numbers. To facilitate such a comparison, it is nec-
essary to define an equivalent axial coordinate for
thermal diffusion &, for the UHF case in terms of the
local wall temperature T,(x) and an equivalent axial
coordinate for mass diffusion &_, for the UMF case in
terms of the local wall concentration C,(x). Let

ée = g'i[I(er‘l)el/li]_ Lia (37)
Fo
2x a

Cee = o [1(Greoel/4]™ (38)
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where
(Gr, )y, = LT = T, ]
o2
(Grede = g‘?*[(w(“))— ¢, )x .
22
and

Tu(x) = T, = (qux/kNGr¥ /5) ¢(x,0)  (40)
Cox) = C . = (m,x/pD)(Gr¥ /5)' 5wy, 0) (41)

from equations (24) and (25), respectively.

Substituting equation (40) into equation (37) one
obtains, with the aid of y definition in equation (22},
that

Ce= 2[5/ (r. 0] 1% {42}

Similarly, by substituting equation (41) into equation
(38), one arrives at
Eee = 2[5/ N*w(%,0)]~ 14

Thus, for ¢ = £, as given by equation (42), one finds
from equations (20) and (35) that

(Nuy)uur (4/5)'*

— = o (44)
(NuJywr [_ 6 (S-O)] [(,b(X»O)]

Similarly, for ¢, = &.,, one can find the Sherwood

number ratio as

(Sh,‘)%£ _ (4/5?‘7»“__7 ) )
Shduwe [ (E0)] [0 (0] *o(x0]
To determine the local Nusselt number and the local
Sherwood number ratios, the relationship between N*

and N needs to be known. From the definition of N
and N* it can be shown that

N*/N = ¢ (x,0)/w(y,0)

{43)

{40)

when ¢ = £, With this, a comparison between
equation (42) and equation (43) yields the relationship

E,.=E N, (47)

In the situation in which S¢ = Pr, the ¢ and o
functions, equations (27) and (28), become identical
and ¢(x,0) = ®(x,0). This leads to N* = N from
equation (46) when ¢ = £, In addition, equations (11)
and (12) give 8'(£,0) = A'(£,0) when Sc = Pr. This then
leads to N* = N when ¢ = ¢, Thus, under the
conditions S¢ = Pr, ¢ = ¢, and N* = N, the local
Sherwood number ratio and the local Nusselt number
ratio as given, respectively, by equations (45) and (44)
become exactly identical. The numerical results for
these ratios will be presented later.

NUMERICAL SOLUTIONS

The two systems of partial differential equations,
equations (10)—(13) and (26)-(29), are coupled, re-
spectively, through the functions £, 0, 4 and F, ¢, w for
parametric values of N, Pr, Sc for the former and N*,
Pr, Sc for the latter. In the present study, these
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equations were solved by an accurate finite-difference
method. This method is a modified version of the
method described in [5] for solutions of uncoupled
equations. To begin with, the partial differential
equations (10)—(12) or (26)-(28) are first converted
into a system of first order equations which are then
expressed in finite-difference form by approximating
the functions and their first derivatives in terms of
centered difference and averages at midpoints of the
net segments in the (£,%) or (x, Y) coordinates or the
net rectangles in the (£,1) or (x, Y) domains. The
resulting nonlinear finite difference equations are then
solved by Newton’s iterative method.

In the computations for the uniform wall tempera-
ture/concentration (UWT/UWC) case, the & values
were varied from 0 to about 10 and the values of the
parameter N from —0.5 to 1.0, with Schmidt numbers
ranging from 0.2 to 1.0 for Pr = 0.7 and from 7 to 500
for Pr = 7. For the case of uniform surface heat/mass
flux, the y values were varied from O to 5 and the N*
values from —0.5 to 1.0, with Schmidt numbers of 0.6
to 1.0for Pr = 0.7 and 7 to 500 for Pr = 7. While a step
size of A or Ay 0f 0.25 was found to be sufficient for the
entire £ or y range investigated, the step sizes for Ay or
AY were varied from the standpoints of accuracy and
economy. For the UWT/UWC case with Pr = 0.7, Ay
was increased step by step from 0.02for 0 < n < 6,0.04
for6 <5 <15,008for15 < <30,025for30 <y <
80, 2.0 for 80 < n < 350, to 5.0 for n > 350. The ,
values were varied from 10 to about 500 as ¢ increased
from 0 to about 10. Similar increases in step sizes were
employed for the UHF/UMF case over the Y, range of
10 to 200 as y varied from 0. to 5. However, for very
high Schmidt numbers, such as S¢ = 100 and 500, that
are associated with Pr = 7, the mass fraction boun-
dary layer becomes very thin (n < 1) as compared to
the flow and thermal boundary layers, and smaller step
sizes of Ay = 0.005for0 < n < tand AY = 0.002for 0
< Y < 1 were additionally used, respectively, for the
UWT/UWC and UHF/UMF cases to provide ac-
curate results. The Schmidt number range for Pr = 0.7
covers diffusion into air of hydrogen (S¢ = 0.22), water
vapor (0.6), carbon dioxide (0.94) and methanol (0.97).
For Pr = 7, a Schmidt number of 500 covers closely
the diffusion into water of ammonia (Sc = 445),
carbon dioxide (453), sulfur dioxide (523), methanol
(556), sodium chloride (580), and chlorine (617).

RESULTS AND DISCUSSION

Figures 1-3 illustrate, respectively, the local wall
shear stress, the local Nusselt number, and the local
Sherwood number as a function of ¢ for the UWT/
UWC case, covering various parametric values of N
and Sc for Pr = 0.7 and 7. Similar plots for the
UHF/UMF case are shown, respectively, in Figs. 4-6
as a function of y. It is noted that both ¢ and y are not
only a measure of the curvature of the cylinder, but
also a measure of the ratio of the boundary-layer
thickness to the cylinder radius r,, because they can be
represented, respectively, as & = (r* — r3)/riyand y =

20— ¥ —
N UWT/UWC

(Pr,Sc)

N
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FiG. 1. Local wall shear results for uniform wall tempera-

ture/concentration, Pr = 0.7 and 7.

32—

T—T T

T T S
N UWT/UWe 3¢

24

g
T‘A
g
- 16
-K
e
>
2
Z
08

L S

8 10 12

~a

FiG. 2. Local Nusselt number results for uniform wall
temperature/concentration, Pr = 0.7 and 7.

(r* — r3)/riY. Thus, small values of & or y represent
thin boundary layers compared to r, and hence small
deviations from a flat plate, with ¢ = O or y = 0
corresponding exactly to a vertical flat plate. On the
other hand, large values of ¢ or y correspond to
relatively thick boundary layers and hence to large
departures from a flat plate. It should be noted,
however, that £ = 0 or y = 0 implies that r, — oo.
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FiG. 3. Local Sherwood number results for uniform wall
temperature/concentration, Pr = 0.7 and 7.

The wall shear stress 1,,(x*/4uv)/(Gr, /4)** for the
UWT/UWC case (Fig. 1) is seen to increase with
increasing value of &, i.e. with increasing curvature of
the cylinder. On the other hand, for the UHF/UMF
case (Fig. 4), the quantity 7, (x*/Suv)/(Gr? /5)*"° de-
creases with an increase in y. However, the decrease of
this quantity does not mean that the wall shear stress
1,, decreases with increasing value of y. Indeed, it

[T e— ‘ ‘ -
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F1G. 4. Local wall shear results for uniform surface heat/mass
flux, Pr = 0.7 and 7.
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24 : S

LHE 2 UME ) 1

Fii;. 5. Local Nusselt number results for uniform surface
heat/mass flux, Pr = 0.7 and 7.

actually increases, as will now be demonstrated. From
equation (34) the wall shear stress 7, for the UHF/
UMTF case is seen to be proportional to x*F“(y,0).
In addition, from the y expression in equation (22), one
sees that y ~ x}* or x ~ . Thus, in terms of ¥, one
obtains 1, ~ y>F"(x,0), and the wall shear stress ratio
af two different y values for the UHF/UMF case can
be expressed as

(Twa/Twilour = (XZ/XI)2[}?”(}523O)JiFN(XiaO)]-

(48)
- YIS
NT R auME :
6 :
Pr=7
Wy
>
%) .
= i
ﬁ‘x
©
Tk
£~
[12]
o . ; : . :
o] t 2 3 4 5 &

FiG. 6. Local Sherwood number results for uniform surface
heat/mass flux, Pr = 0.7 and 7.
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As an example, for Pr = 0.7, S¢ = 0.6,and N* = |, the
numerical results provide F"(y,,0) = 1.1829for y, = 1
and F"(x,,0) = 1.1211 for x, = 2. This gives
{(Ty2/Twi)unr = 3.791. Thus, the actual wall shear stress
increases with an increase in the y value. From the
analogy between heat and momentum transfer, an
increase in the Nusselt number is a consequence of an
increase in the wall shear stress, and vice versa. Figure
5indicates that the local Nusselt number Nu, increases
with an increase in y. Thus, 7, should also increase
with %, as has just been demonstrated. Similarly, from
the definition of ¢ in equation (6) and 1,, in equation
(19) one can derive for the UWT/UWC case

(twa/Twiduwr = (E2/E)Lf" (€2, 0)/f"(£41,0)].
(49)

For Pr = 0.7, 8¢ = 0.6, and N = 1, for example, one
has f"(£,,0) = 1.225 when &, = 0.931 (corresponding
to x; = 1) and f7(£;,0) = 1.296 when &, = 1932
(corresponding to x, = 2). This gives (1,,2/T, 1 Juwr =
2.195. Again, the actual wall shear stress for the
UWT/UWC case is seen to increase with increasing &.
A comparison between these two wall shear stress
ratios suggests that, contrary to the conclusions one
might have drawn from examining Figs. 1 and 4, the
combined buoyancy force has a larger effect on the
wall shear stress for the UHF/UMTF case than for the
UWT/UWC case. This agrees with the trend of Nusselt
number ratio between the UHF and UWT cases, as
will be explained later when Fig. 10 is presented.

An inspection of Figs. 1 and 4 also reveals that the
values of the wall shear stress are larger for fluids with
Pr = 0.7 (such as air) than for fluids with Pr = 7 (such
as water). This is because of the Jower Prandtl number
of air which exhibits a greater velocity gradient
and hence the shear stress at the wall. In contrast to the
wall shear stress plots, the local Nusselt numbers for
both UWT/UWC and UHF/UMF cases (Figs. 2 and
5) are seen to increase with increasing curvature of the
cylinder. Furthermore, the local Nusselt numbers for
Pr = 7 are larger than those for Pr = 0.7. This is to be
expected, because a larger Prandtl number resultsin a
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thinner thermal boundary layer, with a corresponding
larger temperature gradient at the wall and hence a
larger surface heat transfer rate.

Itis seen from Figs. 1, 2,4, and 5 that as compared to
thecase of N = Qor N* = ((i.e. the case in which there
is no mass diffusion and the buoyancy force arises
solely from the temperature difference), both the wall
shear stress and the local Nusselt number increase
when the buoyancy force from mass diffusion acts in
the same direction as the thermal buoyancy force to
assist the flow (ie. when N > 0 or N* > 0) and
decrease when the buoyancy force from mass diffusion
acts in the opposite direction of the thermal buoyancy
force to oppose the flow (i.e. when N < Qor N* < 0).
Indeed, the combined buoyancy effects of thermal and
mass diffusion are represented by the terms 8 + NAin
equation (10) and ¢ + N*w in equation (26), re-
spectively, for the UWT/UWC and UHF/UMF cases.
When the combinations of Pr, Sc, and N or N* are
such that # + NA > 8 or ¢ + N*w > ¢, the net
buoyancy force contributes to an increase in both the
wall shear stress and the local Nusselt number beyond
their respective values for N = 0 or N* = 0. On
the other hand, if @ + NA < for ¢ + N*w < ¢,
the net buoyancy force will contribute to a decrease in
these two quantities below those for N = 0 or N* = 0.

Inspection of Figs. 1,2, 4, and 5 further indicates that
a common trend exists among the wall shear and
Nusselt number results. That is, larger departures of
these quantities from N = 0 {or N* = 0)areseen to be
associated with smaller values of Schmidt numbers for
both N > 0 (or N* > 0)and N < O (or N* < 0). This
trend agrees with the physical reasoning in that a
diffusing species with a smaller Schmidt number
possesses a larger binary diffusion coefficient which
will in return exert a larger effect on the flow and
thermal fields.

The Sherwood number results {Figs. 3 and 6) show,
as in the local Nusselt number plots, that the local
Sherwood number increases with an increase in the
curvature parameter ¢ or y. However, in contrast to
the trend in the local Nusselt number results, larger
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FiG. 7. Representative velocity profiles for uniform wall temperature/concentration, Pr = 0.7.
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values of Schmidt number are seen to provide larger
Sherwood numbers. This can be explained from the
fact that a larger Schmidt number corresponds to a
bIIldllCl UIIldIy UlllublUIl LUCIUL]CI]I. lof a gi'v'eﬁ llUIU dIlLl
to a thinner concentration boundary layer relative to
the flow boundary layer. This results in a larger
concentration gradient at the wall (see Fig. 9) and
hence a larger mass transfer rate or a larger Sherwood
number. When N or N* is very small (i.e. when the
species diffusion is very small), heat transfer is not
strongly affected by species diffusion (see Figs. 2and 5),
but the mass-transfer parameter or the Sherwood
number becomes very large and exceeds that for a
larger N or N* value (see Fig. 3 and 6). This is because
under this condition the flow is induced almost entirely
by the thermal buoyancy force and the species
diffusion mechanism becomes very effective at very
low concentration levels. This accounts for the fact
that for a given concentration Grashof number Gr, . or
Gr¥ ., the Sherwood number curves for smaller N or
N* values lie above those for larger N or N* values.
Since for a fixed concentration Grashof number Gr, ,
a small N value implies a large thermal Grashof
number Gr,,, it can be said that large Sherwood
numbers occur when the thermal Grashof numbers are
large compared to the concentration Grashof
numbers.

It is to be noted here that there are no curves for N
= 0 or N* = 0in Figs. 3 and 6. This is because the
Sherwood number is undefined when N = 0 or N* =
0, as this condition implies that there exists no
concentration difference in the fluid or that the
concentration level is negligibly small compared to the
temperature difference in the fluid. In addition, the
absolute quantities|Gr, /N |and |Gr¥ /N*| are needed
to ensure that the Sherwood numbers will be positive,
for Gr, ., N, Gr¥ , and N* assume positive as well as
negative values.

It is of practical interest to compare the present
analytical results with experimental results. To the best
knowledge of the authors, the only available experi-
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mental data for vertical cylinders are those of Bot-
temanne [6] for simultaneous heat transfer and evap-
oration of water vapor into still air (with Pr = 0.71 and
N LI T AV Y W AN VTS PRI LS,
U.03j UIIUC[ Ult: U Wil /U yY \ CondaiIloiL.
Bottemanne’s experiments were conducted using a
cylinder of “large diameter™. Unfortunately, he did not
mention the diameter of the cylinder. His experimental

results are, in the notation of the present paper,

0(&,0)= —0.52(1 + N)'#,
Z(E,0)= — 04901 + M)'*. (30)

This gives, for example, §'(£,0) = — 0.6184 and »(<,0)
= — 0.5827for N = 1,and #'(£,0) = — 0.4669 and /’
{£,0) = —0.4400 for N = —0.35. The present analysis
for Prr = 0.7 and Sc¢ = 0.6 under UWT/UWC
condition provides (1) (0,0} = - 0.6007, »'(0.0) =

F o PR | M
— 0.5533for N = 1and §(0,0) = - 0.4426, 2'(0,0} =

— 0.4085for N = — 0.35when & = 0 (i.e. for a vertical
plate) and (2) 6'(0.5,0) = — 0.7267, 2(0.5.0)
0.6799 for N = 1and 6'(0.5,0) = — 0.5368./ (0,5.()5 =
— 0.5013 for N = — 0.35 when & = 05 (le fora
cylinder of relatively large diameter). From these
comparisons, it is evident that the experimental data of
Bottemanne for a large-diameter cylinder lie between
the analytical results for ¢ = Oand & = 0.5 for both N
= land N = — 0.35. Thus, it may be concluded fhat
the agreement between the analysis and the experi-
ment is fairly good.

Representative velocity, temperature, and mass frac-
tion or concentration profiles for the UWT/UWC case
with Pr = 0.7 are illustrated, respectively, in Figs. 7-9
for certain values of &, N, and Sc. The curvesfor N = 0
in Figs. 7 and 8 correspond to the situation in which
there is no buoyancy force effect from mass diffusion.
There are significant increases in the flow, thermal, and
concentration boundary layer thicknesses as the value
of ¢ increases. However, a larger 5, value associated
with a larger ¢ value does not accurately represent a
larger boundary-layer thickness, as will now be ex-
plained. If y = r — rq is designated as the radial
distance measured outward from the surface of the
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FIG. 8. Representative temperature profiles for uniform walil temperature/concentration, Pr = 0.7.
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Fi1G. 9. Representative concentration profiles for uniform wall temperature/concentration, Pr = 0.7.

cylinder, the n coordinate in equation (6) can be
written as

n = (y/x)(Gre /M *[(1 + r/ro)/2]. (51)
In addition, from the ¢ and »n definitions, one has
rjro = (1 + én)'? (52)

Thus, for large values of &, r/r, may be substantially
larger than one and the factor (1 + r/ry)/2 that appears
in equation (51) acts to increase the range of n for £ >
0. However, this increased range of n does not mean
that the range of (y/x) (Gr,,/4)'"?, which is a more
accurate measure of the boundary-layer thickness, has
increased. Indeed, the range of this quantity could even
decrease with increasing &, but the n value still
increases because of the large increase in the factor (1
+ rfro)/2.

For the velocity profiles (Fig. 7) the velocity gradient
at the wall shows an increase with increasing values of
N and ¢, but with decreasing value of Sc. This trend
agrees with the friction factor results shown in Fig. 1.
Indeed, if the combined buoyancy force effect is larger
than the effect due to thermal buoyancy force alone,
thatis,if @ + NA > 6, the velocity gradient at the wall
will increase. On the other hand, it will decrease when
the combined effect is less than the effect from thermal
buoyancy force, i.e. when # + NA < 6. The tempera-
ture profiles (Fig. 8) show also that the wall tempera-
ture gradient increases as the values of & and N
increase and the value of Sc decreases. This behavior is
consistent with the Nusselt number results shown in
Fig. 2. As with the velocity gradient, the temperature
gradient at the wall increases above that for N = 0
when 8 + N > @ and decreases below it when 8 + N4
< 6.

The concentration or mass fraction profiles (Fig. 9)
exhibit trends that are somewhat different from those
of the velocity and temperature profiles. While the
concentration gradient at the wall increases as ¢
increases, a larger increase is associated with a larger
Schmidt number. The effect caused by the Schmidt

number on the concentration field is similar to the
Prandtl number effect on the thermal field that was
explained when the Nusselt number results were
presented.

Finally, the Nusselt number ratios (Nu,)yus/
(Nu)ywr between the UHF and UWT cases are
plotted against the equivalent curvature parameter £,
in Fig. 10. Curves are shown only for the cases of S¢ =
Prand N* = N.Itcan be seen from the figure that the
Nusselt numbers for the UHF case are higher than
those for the UWT case. As &, increases, the Nusselt
number ratio decreases and becomes a constant at
large values of &,. For Pr = 0.7, the Nusselt number
ratio starts with a value larger than that for Pr = 7 at
&, = 0, but it becomes smaller at larger £, values. In
addition, it is seen that the Nusselt Number ratio
decreases as the value of N* = N decreases. As was
explained in the Analysis Section, the Sherwood
number ratio (Sh,)ume/(She)uwc is exactly identical to
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F1G. 10. Nusselt number ratio and Sherwood number ratio
for S¢ = Prand N* = N.
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the (Nu, )ynr/(Nu,)ywr ratio when Sc = Prand N* =
N,with & = £, Thus, the curves in Fig. 10 also apply to
the Sherwood number ratios.

CONCLUSION

The present study on natural convection on a
vertical cylinder under the combined buoyancy force
effects of thermal and species diffusion indicates that
the local Nusselt number and the local Sherwood
number increase with increasing curvature of the
cylinder. The local Nusselt number increases and
decreases as the buoyancy force from species diffusion
assists and opposes, respectively, the thermal buoy-
ancy force. The mass transfer is found to become more
effective as the thermal buoyancy force increases.
While the local surface heat transfer is enhanced as the
Schmidt number is decreased, the surface mass transfer
increases with increasing Schmidt number. In addition,
both the local Nusselt number and the local Sherwood
number have larger values for Pr = 7 than for Pr =
0.7. The combined buoyancy force from thermal and
mass diffusion has been found to provide larger
Nusselt and Sherwood numbers under uniform surface
heat/mass flux than under uniform wall
temperature/concentration.
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TRANSFERT SIMULTANE DE CHALEUR ET DE MASSE EN
CONVECTION NATURELLE LE LONG D'UN CYLINDRE VERTICAL

Résumeé - Dans un étude analytique, on considére le transfert de chaleur et de masse pour un écoulement de
convection naturelle le long d’un cylindre vertical, sous l'effet combiné de la diffusion thermique et des
espéces. L'analyse est réduite au cas ou les effets de la thermodiffusion aussi bien que des vitesses interfaciales
provenant de la diffusion des espéces sont négligeables. La surface du cylindre est soit a
température/concentration uniforme soit a flux de chaleur/masse uniforme. Parmi les paramétres
principaux, on note la courbure du cylindre, les nombres de Prandt! et de Schmidt, les nombres de Grashof
thermique et massique et l'effet relatif des forces dues a la diffusion de chaleur et de masse. Des résultats
numeériques sont présentés pour la diffusion d’espéces dans Iair et dans I'eau. Pour les deux conditions de
chauffage et de diffusion, la tension pariétale locale, les nombres de Nusselt et de Sherwood locaux croissent
avec la courbure du cylindre. De plus, les deux premiéres grandeurs augmentent ou diminuent selon que la
force d’Archiméde diie a la diffusion massique assiste ou s'oppose a celle die 4 la diffusion thermique. Ce
paramétre de transfert massique ou le nombre de Sherwood local est augmenté lorsque la force d’origine
thermique croit. Enfin, les forces combinées d’origine thermique et massique conduisent a des nombres de
Nusselt et de Sherwood plus grands pour les conditions surfaciques de flux thermique/massique uniforme
que pour les conditions de température/concentration uniforme.

GLEICHZEITIGER WARME- UND STOFFUBERGANG BEI FREIER
KONVEKTION LANGS EINES VERTIKALEN ZYLINDERS

Zusammenfassung—Eine analytische Untersuchung wird durchgefiihrt, um das Wirme- und Stoffiiber-
gangsverhalten bei freier Konvektions-strémung entlang eines vertikalen Zylinders unter den kombinierten
Einfliissen der Auftriebsdkrifte von Wirmeleitung und Diffusion zu analysieren. Die Analyse ist auf
Vorginge beschrinkt, bei denen sowohl die Diffusionsthermo- und Thermodiffusions-Effekte, als auch die
Grenzflichengeschwindigkeiten infolge der Stoffdiffusion vernachlissigbar sind. Die Oberfliche des
Zylinders wird entweder auf gleichmiBiger Temperatur bzw. Konzentration gehalten, oder einer gleichmafi-
gen Wirme- bzw. Massenstromdichte unterworfen. Die Hauptparameter des Problems sind Kriimmung des
Zylinders, Prandtl- und Schmidt-Zahlen, thermische und konzentrationsbezogene Grashof-Zahl und das
Verhiltnis zwischen den thermisch und konzentrationsbedingten Auftriebskrafteffekten. ZahlenmiBige
Ergebnisse werden erhalten und fiir den interessierenden Bereich der Stoffdiffusionen in Wasser und Luft
angegeben. Sowohl bei Heizungs-wie auch bei Diffusionsbedingungen nehmen die drtliche Wandschubspa-
nnung, die 6rtliche Nusselt-Zahl und die Srtliche Sherwood-Zahl mit zunehmender Kriimmung des
Zylinders zu. AuBerdem wurde gefunden, daB die ersten zwei GroBen zu- oder abnehmen, je nachdem die
Auftriebskraft infolge der Stoffdiffusion die thermische Auftriebskraft unterstiitzt oder ihr entgegengerichtet
ist. Der Stoffiibergangsparameter oder die drtliche Sherwood-Zahl wird mit zunehmender thermischer
Auftriebskraft groBer. SchlieBlich liefert die kombinierte Auftriebskraft durch Wirmeleitung und Stoffdiffu-
sion fiir gleichmiBige Warme- bzw. Stoffstromdichten an der Oberfliche groBere Nusselt- und Sherwood-
Zahlen als fiir gleichformige Wandtemperaturen bzw. Wandkonzentrationen.
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COBMECTHBIN TEIJIO0- U MACCOTNEPEHOC IMPH ECTECTBEHHON KOHBEKLIUU
B/10J1b BEPTUKAJIBHOIO LIUJIMHIPA

AnnoTauss — IIpoBeneH aHAIM3 TENJIO- H MACCOOOMEHHBIX XaPAKTEPHCTHK €CTECTBEHHO-KOHBEKTHBHOIO
TEYEHHA BAOJb BEPTHKAJIBHOTO LWWJIHHApPA [PH COBMECTHOM [JCHCTBHH MOABEMHLIX CHJ, 00YCJIOBJIEH-
HbIX OHPY3HER Tensia W BelllecTBa. AHAIHM3 OrpaHHYCH MPOLECCAMH, B KOTOPBLIX Au(QY3HOHHBIA
TepmospbexT H Tepmoaudy3HOHHBIH PdekT, a TakkKe BEIHYHHA CKOPOCTH Ha IOBEPXHOCTH
nuuMnapa, obycnosnennas nudysueidi Beiectsa, npeHeOpexumo Manbl. [loBepxHOCTh UWIHHApaA
WIH HaXOLHTCS [pH MOCTOSHHOH TeMmepaType—KOHLUEHTPALMH WIH NONBEPXKEHa ACHCTBHIO OIHO-
POAHOrO TENJNOBOrO-MaccoBOro 1oToka. OCHOBHBlE NapaMeTphl 3alaid BK/IIOYAJIH KPHBH3HY
mmnuaapa, yucaa [pawarna u lliMuarta, Tenjosoe H kOHUEHTpauMoHHoe yHMcia [pacroda, a taxxe
OTHOLICHHE NMOABEMHBIX CHI, 06ycoBneHHbIXx AH(bYy3ueil BewecTBa M Tenia. [Tony4eHbl YHCAEHHbIE
pesynbTaThl s Auddysun B Bosayxe M Boje. Kak ans tennoBblX, Tak H ans AH(QY3IHOHHBIX
TPAHHYHBIX YCIOBHHA, 3HAYEHHWA JIOKAJBHOTO HANPSXEHMs CIBHTA HA CTEHKE, JOKaJbHOTO 4MCiIa
HyccenbTa M noxanbHoro yucna llepsyna yBenuyHBaroTcsi ¢ pOCTOM KpMBH3HBI umiuHzapa. Kpome
TOrO HaiiJleHO, YTO NEpBble 1B BEJHYHHBI BO3PACTAIOT MM YMEHbLUAIOTCA B 3aBHCHMOCTH OT TOTO,
HAIpaBJIcHa JIH TOAbEMHAs cHna, 0bycnopienHas 1uddy3ueit BelecTBa, B CTOPOHY NEHCTBUA TEMIOBOH
OOBEMHOM CHJIBI HJTH B [IPOTHBONOJIOXHOM €l HanpaBieHuH. [TapameTp MaccoobMeHa MM JI0KaJIbHOE
uncno lllepByna Bo3pactaer mo Mepe yBelH4YeHHA 3HAuMeHHs TeloBOH moabémuod cuinl. Haxower,
NpH OJHOBPEMEHHOM JelicTBHH nuddy3uH Tenna # BelnecTBa 3HaueHud uydcen Hyccenbra u llepsyna
JU1S OIHOPOAHOIO MOTOKA TEMJIa—MacChl HA NOBEPXHOCTH BBILIE, YeM [UIS MIOCTOSHHON TeMIlepaTypbli—
KOHLEHTPALMH HA CTEHKE.
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